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Abstract. Soil erosion rates on arable land frequently exceed the pace at which new soil is formed. This 

imbalance leads to soil thinning (i.e., truncation), whereby subsoil horizons and their underlying parent 

material become progressively closer to the land surface. As subsurface horizons often have contrasting 

properties to the original topsoil, truncation-induced changes to soil properties might affect erosion rates 5 

and runoff formation through a soil erosion feedback system. However, the potential interactions between 

soil erosion and soil truncation are poorly understood due to a lack of empirical data and the neglection of 

long-term erodibility dynamics in erosion simulation models. Here we present a novel model-based 

exploration of the soil erosion feedback system over a 500-year period, using measured soil properties from 

a diversified database of 265 soil profiles in the United Kingdom. We found that modelled erosion rates in 10 

39 % of the soil profiles were sensitive to truncation-induced changes in soil properties and that most of 

these truncation-sensitive profiles (75 %) displayed a deaccelerating erosion trend over the simulation 

period. This was largely explained by decreasing silt contents in the soil surface due to selective removal 

of this more erodible particle size fraction and the presence of clayey or sandy substrata. Moreover, the 

profiles with deaccelerating erosion trends had an increased residual stone cover, which armoured the land 15 

surface and reduced soil detachment. Contrastingly, the soils with siltier subsurface horizons continuously 

replenished the plough layer with readily erodible material, which accelerated the soil losses over time. 

Ultimately, our results demonstrate how soil losses can be sensitive to erosion-induced changes in soil 

properties, which in turn may accelerate or slow down soil thinning. These findings are likely to affect how 

we calculate soil lifespans and make long-term projections of land degradation. 20 
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1 Introduction 

Rates of soil erosion on agricultural land often exceed the rates at which new soil is formed (Evans et al., 

2019; Montgomery, 2007). This imbalance is one which, left unchecked, can pose a critical threat to the 25 

sustainability of global soil resources and their ability to deliver vital ecosystem services across 

environments and society (Bot et al., 2000; Quinton et al., 2010). Moreover, as soils become thinner (i.e., 

truncated), the subsoil horizons and their underlying parent material become progressively closer to the 

land surface. This process might affect physical, chemical and biological topsoil properties (Bouchoms et 

al., 2019; Papiernik et al., 2009; Vanacker et al., 2019), as well as soil water availability to plants and 30 

ultimately crop growth (Herbrich et al., 2018; Öttl et al., 2021; Schneider et al., 2021).  

Erosion-induced changes to soil depth and soil properties can therefore influence soil losses and runoff 

formation through a soil erosion feedback system (Morgan et al., 1984; Vanwalleghem et al., 2017). 

Understanding how such system might develop over time and under assorted conditions might be an 

important step to proactively design and implement effective soil conservation strategies, as different soils 35 

are likely to be impacted by erosion in varied ways (Hoag, 1998). However, the empirical data over decadal 

to centennial timescales required to explore the feedbacks between soil erosion and soil thinning are 

currently non-existent. It follows that process-oriented soil erosion models are arguably the only available 

tool to simulate how erosion processes interact with truncation-induced changes in the soil system. 

To date most soil erosion models and model users assume that the inherent erodibility (i.e., the susceptibility 40 

of soil to erosion) of different soil horizons down a soil profile is constant over the period of a model 

simulation. As upper soil horizons are removed by erosion, exposing the subsurface material, the implicit 

assumption in soil erosion modelling is that this erodibility is not variable, such that any changes to 

projected erosion rates are solely a factor of climate, land cover, and topography (e.g., Ciampalini et al., 

2020; Eekhout et al., 2021; Panagos et al., 2021). However, since erodibility is a reflection of soil physical, 45 

chemical, and biological properties, and given that subsoils typically (although not exclusively) exhibit 

contrasting soil properties to those observed in upper horizons, it follows that erodibility is not necessarily 

a constant as a soil profile thins. Furthermore, soil erodibility might change over longer timescales due to 

the coarsening and armouring of surface soils (Sharmeen and Willgoose, 2007; Willgoose and Sharmeen, 

2006) and the depletion of erodible material as a result of extreme soil truncation (Anselmetti et al., 2007). 50 

Although the soil erosion feedback system has been recognised as a key challenge for modelling past and 

future erosion rates (Vanwalleghem et al., 2017), long-term dynamics of soil erodibility are an 

underexplored topic in erosion research. Exceptions come from landscape evolution models, which 
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simulate the influence of erosion and deposition on soil development over millennia (Marijn Van Der Meij 

et al., 2020; Sommer et al., 2008). However, in areas under severe erosion rates, subsoil horizons can be 55 

exposed within a matter of decades (Evans et al., 2020), which might trigger unexpected responses 

regarding runoff formation and soil losses. Moreover, soil truncation can introduce substantial spatial 

variability to soil properties, often not accounted for in static soil maps used for a variety of purposes 

(Świtoniak et al., 2016).  

Here, we present a novel exploration of the soil erosion feedback system by simulating 500 years of soil 60 

losses and surface runoff on 265 agricultural soil profiles in the United Kingdom. We investigate how soil 

erosion rates respond to truncation-induced changes in soil properties and unravel the processes potentially 

driving such responses in different soil types. To the best of our knowledge, this is the first time soil erosion 

models have been used to understand the interactions between soil erosion, soil thinning, and soil 

erodibility, and how these interactions are established in varying soil types. An enhanced understanding of 65 

such dynamic soil erosion feedback system will be crucial for improving the calculation of soil lifespans, 

providing future soil loss projections, and designing long-term soil conservation strategies. 

2 Materials and methods 

2.1 Concept 

Our modelling concept is essentially a numerical thought experiment, in which land cover, agricultural 70 

management, climate, and topography parameters are held within a constant range, so that any changes in 

simulated soil losses and surface runoff over a 500-year period are solely a result of changes in soil 

properties due to erosion processes (Fig. 1). To perform this experiment, we parametrised a soil erosion 

model using data from 265 agricultural soil profiles spread across the United Kingdom (Fig. 2). The abstract 

spatial scale of the simulations can be perceived as a pedon located on conventionally tilled hillslope with 75 

winter cereals. For simplicity, we assume this spatial unit does not receive runoff and sediment input from 

upslope. As the original topsoil of each profile/pedon is successively removed by erosion, our model 

gradually mixes the subsurface horizons into a 20 cm plough layer, continuously updating soil properties 

through mass-balance models and pedotransfer functions (Fig. 1). 

https://doi.org/10.5194/egusphere-2022-181
Preprint. Discussion started: 25 April 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

 80 

Figure 1. Modelling concept: selective soil erosion processes alter topsoil properties, which are then mixed 

with the underlying substrata as the soil profile thins. Updated soil properties for the plough layer are used 

as model inputs for the following timestep.
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Figure 2. Location of the 265 soil profiles used in this study. Data source: Land Information System 85 

(LandIS) (LandIS, 2022). 

In order to implement our modelling concept, we adapted the Modified Morgan-Morgan-Finey model 

(MMMF) (Morgan and Duzant, 2008). The model was chosen due to its ability to simulate multiple erosion 

subprocesses (e.g., runoff formation, detachment by raindrop impact and runoff, particle size selectivity) 

with a parsimonious parameter set. Importantly, the MMMF has provided acceptable predictions of annual 90 

soil losses for different testing sites in England (Morgan and Duzant, 2008). In the following we provide a 

brief description of the basic MMMF equations (Section 2.2). We subsequently characterise the soil profile 

database used for the modelling (Section 2.3) and describe the model implementation, including the mixing 

of surface and subsurface horizons (Section 2.4). 

2.2 MMMF operating equations 95 

The MMMF is a process-oriented conceptual model running on an annual timestep, in which soil erosion 

processes are separated into a water phase and a sediment phase (Morgan et al., 1984; Morgan and Duzant, 
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2008). In the water phase, effective annual rainfall (PEF; mm) is calculated considering the effect of 

interception by the vegetation cover: 

𝑃𝐸𝐹 = 𝑃 ∙ (1 − 𝑃𝐼)  (1) 

Where P is the mean annual rainfall (mm) and PI is the average rainfall interception (proportion 0-1) 100 

afforded by the vegetation cover. For annual crops, PI and all other land cover parameters are taken as an 

approximate average over the growing season. 

Annual leaf drainage (LD; mm) and direct throughfall (DT; mm) are separated as a function of the average 

canopy cover of the vegetation (CC; proportion 0-1): 

𝐿𝐷 = 𝑃𝐸𝐹  ∙ 𝐶𝐶  (2) 

𝐷𝑇 = 𝑃𝐸𝐹 − 𝐿𝐷  (3) 

The kinetic energy of direct throughfall KEDT is calculated with the typical value of erosive rainfall intensity 105 

for a given location (I; mm hr-1) and the amount of annual direct throughfall, whereas the kinetic energy of 

leaf drainage KELD is a function of the average plant height for the growing season (PH; m). Total kinetic 

energy of the effective annual rainfall (KE; J m-2) is then calculated as the sum of the throughfall and leaf 

drainage components. 

𝐾𝐸𝐷𝑇 = 𝐷𝑇 ∙ (8.95 + 8.44 ∙ 𝑙𝑜𝑔10𝐼)  (4) 

𝑖𝑓 𝑃𝐻 < 0.15; 𝐾𝐸𝐿𝐷 = 0  

𝑖𝑓 𝑃𝐻 ≥ 0.15; 𝐾𝐸𝐿𝐷 = 15.8 ∙ 𝑃𝐻0.5 − 5.87 

 (5) 

(6) 

𝐾𝐸 = 𝐾𝐸𝐷𝑇 + 𝐾𝐸𝐿𝐷  (7) 

Saturation excess overland flow typically occurs in climates with low intensity precipitation and without a 110 

pronounced seasonal rainfall regime (Morgan and Duzant, 2008), specifically in areas with shallow soils 
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and impermeable bedrocks (Beven, 2012). In the MMMF model, saturation excess runoff generation is 

assumed to occur when the mean daily rainfall exceeds the mean daily storage capacity of the soil (SC; 

mm): 

𝑆𝐶 = 1000 ∙ 𝑀𝑆 ∙ 𝐵𝐷 ∙ 𝐻𝐷 ∙  (
𝐸𝑇𝑎

𝐸𝑇𝑝
)

0.5

                     
 (8) 

 115 

Where MS is soil moisture at field capacity (% w w-1), BD is bulk density (Mg m-3), HD is effective 

hydrological depth (m) (i.e., the land cover dependent soil depth in which storage capacity controls the 

generation of runoff), and ETa/ETp is the ratio of actual to potential evapotranspiration. These parameters 

represent an approximate average for the cropping season. 

The annual runoff generation (Q; mm) is then estimated as a function of annual effective rainfall, the ratio 120 

between storage capacity and mean daily rainfall (PM, mm), and the slope length of the spatial modelling 

element (L; m): 

𝑄 = 𝑃𝐸𝐹  ∙ 𝑒
(−

𝑆𝐶
𝑃𝑀

)
∙ (

𝐿

10
)

0.1

 
 (9) 

In the sediment phase, the annual detachment of soil particles by raindrop impact (ER kg m-2) and by surface 

runoff (EQ; kg m-2) are calculated separately for the clay, silt, and sand texture classes, which are 

subsequently summed: 125 

𝐸𝑅 = ∑ [𝐾𝑅𝑖 ∙
𝑇𝑖

100
 ∙ (1 − 𝑆𝑇) ∙ 𝐾𝐸 ∙ 10−3]

𝑖

𝑛=1

  
 (10) 

𝐸𝑄 = ∑ {𝐾𝑄𝑖
∙

𝑇𝑖

100
∙  𝑄1.5  ∙ [1 − (𝐺𝐶 + 𝑆𝑇)]  ∙ 𝑠𝑖𝑛0.3 ∙ 𝑆 ∙ 10−3}

𝑖

𝑛=1

  
 (11) 

Where KR is the detachability of the soil by raindrop impact (J m-2), T is the percentage of texture class i, 

ST is stone cover (proportion 0-1), KQ is the detachability of the soil by runoff (J m-2), GC is the average 

proportion of the soil covered by vegetation during the growing season (0-1), and S is slope angle (degrees). 

Soil detachability values for each texture class i (clay, silt, and sand) are taken from Quansah (1982).  
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The immediate deposition of detached sediments (D; %) (i.e., the percentage of sediments not delivered to 130 

the runoff for transport) is estimated as a function of the average annual flow velocity, in our case for 

vegetated conditions (vv; m s-1), and the particle fall number (FN): 

𝑣𝑣 = (
2 ∙ 𝑔

ø ∙  𝑁𝑉
)

0.5

∙ 𝑆0.5 
 (12) 

𝐹𝑁𝑖 =
𝐿 ∙ 𝑣𝑠𝑖

𝑣𝑣  ∙ 𝑑
 

 (13) 

𝐷𝑖 =  44.1 ∙  (𝐹𝑁𝑖)0.29  (14) 

Where g is the gravitational acceleration (9.81 m s-2), ø is the diameter of plant stems (m), NV is the number 

of stems per unit area (number m-2), vs is the fall velocity for texture class i (0.00002 m s-1, 0.002 m s-1, and 

0.02 m s-1 for clay, silt, and sand, respectively), and d is the hydraulic radius of the flow (0.005 m for 135 

unchanneled flow, 0.01 m for shallow rills, and 0.25 m for deeper rills). Again, in this case, land cover 

parameter values describe an average over the cropping season. 

The total detached material delivered annually to transport (G; kg m-2) is modelled separately for each soil 

texture class i: 

𝐺 =  ∑ [(𝐸𝑅𝑖
+ 𝐸𝑄𝑖

) ∙  (1 −
𝐷𝑖

100
)]

𝑖

𝑛=1

  (15) 

The annual transport capacity of the surface runoff (TC; kg m-2) is calculated as a function of annual runoff 140 

volume (Q; mm), slope, and the effect of plant cover/tillage on flow velocities, for each particle size class 

i: 

𝑇𝐶 =  ∑ [(
𝑣𝑎 ∙ 𝑣𝑣 ∙ 𝑣𝑡

𝑣𝑏
) ∙ (

𝑇𝑖

100
) ∙ 𝑄2 ∙ sin 𝑆 ∙ 10−3]

𝑖

𝑛=1

  (16) 
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The average flow velocities for the actual soil conditions (va; m s-1), for the effect of tillage (vt; m s-1), and 

for the standard bare soil condition (vb; m s-1) are calculated using the Manning equation: 

𝑣𝑎 =
1

𝑛
∙ 𝑑0.67 ∙  𝑆0.5 ∙ 𝑒−0.018𝑆𝑇  (17) 

𝑣𝑏; 𝑣𝑡 =
1

𝑛
∙ 𝑑0.67 ∙  𝑆0.5   (18) 

Where n is Manning’s roughness coefficient. For the tilled conditions, Manning’s n is estimated as a 145 

function of an implement-dependent surface roughness parameter (RFR) taken from Morgan (2005): 

𝑛 = 𝑒(−2.11+0.03𝑅𝐹𝑅)   (19) 

The annual soil loss (SL; kg m-2) is calculated by comparing the annual transport capacity (TC; kg m-2) and 

the annual sediment delivered to the runoff (G; kg m-2), for each texture class i: 

 If 𝑇𝐶𝑖 ≥ 𝐺𝑖; 𝑆𝐿 = 𝐺𝑖  (20) 

If the amount of sediment delivered to the runoff is greater than the transport capacity, the excess sediment 

will be deposited until G = TC. Such deposition is modelled using the settling velocities and fall numbers 150 

described in equation 14. The sediment balance becomes: 

If  𝑇𝐶𝑖 < 𝐺𝑖 calculate 𝐺1𝑖 = 𝐺𝑖 [1 − (
𝐷𝑖

100
)] 

If  𝑇𝐶𝑖 ≥ 𝐺1𝑖; 𝑆𝐿𝑖 =  𝑇𝐶𝑖; if  𝑇𝐶𝑖 < 𝐺1𝑖; 𝑆𝐿𝑖 =  𝐺1𝑖; 

 (21) 

Finally, the soil losses for the clay, silt, and sand texture classes are summed to produce total estimates of 

annual soil losses (SL; kg m-2): 
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𝑆𝐿 = ∑ 𝑆𝐿𝑖

𝑖

𝑛=1

  (22) 

2.3 Soil database 

The soil profile data used in the model were retrieved from the UK SOILPITS dataset, which is one of 155 

many datasets held within the Land Information System (LandIS) operated by the Soil and Agrifood 

Institute at Cranfield University, UK (LandIS, 2022). The UK SOILPITS dataset represents a compilation 

of a series of soil profile surveys conducted across the UK since 1984. We selected only the profiles under 

agricultural land cover, and which had complete information on the key soil properties used for modelling 

for all described horizons. 160 

Table 1 presents a descriptive summary of the data representing each whole soil profile; that is, data for 

each horizon from each profile has been bulked together. The profiles range in thickness from 0.22 m to 

1.96 m (median depth is 0.60 m) and are typically composed by four characteristic horizons: an A, E, B, 

and C horizon. More information about how each horizon was surveyed and differentiated in the field can 

be found in Hodgson (1997). 165 

 

Table 1. Descriptive statistics of the soil properties from the 265 agricultural soil profiles (depths between 

0.22 and 1.96 m) from the LandIS database used in the simulations. 

Variable Unit Mean Median 
Quantiles 

5th 25th 75th 95th 

Soil moisture at field capacity % w w-1 0.3 0.3 0.2 0.3 0.4 0.5 

Bulk density Mg m-3 1.4 1.4 1.0 1.3 1.5 1.6 

Rock fragments % 2.5 1.0 0.0 0.0 3.5 9.0 

Clay % 24.5 20.0 4.3 12.7 33.0 57.7 

Sand % 39.4 35.0 4.0 15.1 60.4 87.0 

Silt % 36.1 35.0 6.0 22.0 49.0 71.0 

Organic carbon % 4.6 4.7 3.2 4.1 5.3 6.1 

 

Figure 3 demonstrates the variability of key soil properties within the four characteristic soil horizons, 170 

compiling all soil profiles used in the dataset (by ‘key’, we mean those properties which are employed 

directly or indirectly as input variables in our model). There is considerable overlap between each horizon, 

largely due to the heterogeneity of soil types represented in the dataset. However, some distinctive patterns 

can be discerned. For example, between the A and B horizon, bulk density tends to increase, while organic 

carbon tends to decrease. Some 79 profiles were also observed to have an E horizon directly below the A 175 
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horizon. This was distinguished by the presence of a mineral layer with less organic carbon and clay content 

than the underlying B horizon indicating downward and/or lateral translocation into the subsoil. Another 

notable boundary lies between the B and C horizon, where the median volumetric water content at field 

capacity reduces by more than 2.5 times. This may be reflective of some distinctive textural changes 

between these two horizons: the median sand content increases thrice, while both clay and silt decrease by 180 

more than five times. 
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Figure 3. Boxplots of the key soil properties for each horizon of the soil profiles used in this study. Horizons 

which were not classified, or which occurred less than five times in the dataset are not show in the figure. 185 

Organic carbon and rock fragment values undergone a square root transformation to improve the 

visualisation of the data.  
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2.4 Model implementation 

Our modelling framework consists of an application of the MMMF model for each of the 265 soil profiles 190 

over a 500-year period. Whilst the variability of the soil properties across profiles and horizons was 

incorporated into the model, all modelling units were parametrised the same for their climatic, land cover, 

and topographic variables. This was performed to test the sensitivity of modelled soil losses to erosion-

induced changes to soil properties in different soil types. 

We selected rainfall-associated parameter values based on UK average climatic variables for the 1991-2020 195 

period (Kendon et al., 2021). For the land cover parameters, we took the guide values recommended by 

Morgan and Duzant (2008) for conventionally tilled winter cereals. These values represent an approximate 

average for the crop growing season. In addition, we assumed a 10 m slope length and 6° slope gradient for 

the spatial element of the simulation unit. For the soil parameters, we used the measured properties from 

the soil profile database (Table 1). In addition, texture-dependent parameters values were taken for the 200 

model guide, considering the soils’ particle size distribution. A Monte Carlo simulation with 100 iterations 

per year was included to provide a forward error assessment of the model outputs (Beven, 2009). Model 

parameters were sampled from a normal distribution with a 10 % standard deviation to partially account 

for measurement errors and the uncertainty in parameter estimation. The constant parameter distributions 

used in all simulations are displayed in Table 2. 205 

Table 2. Parameter values which were applied to all soil profiles and were sampled in the Monte Carlo 

simulation. 

Parameter Unit Symbol Mean SD 

Annual rainfall mm P 1200 120 

Number of rainy days per year - - 160 16 

Average intensity of erosive rainfall  mm h-1 I  10 1 

Effective hydrological depth m HD 0.12 0.012 

Permanent interception - PI 0.4 0.04 

Ratio of actual to potential evapotranspiration - ETa/ETp 0.6 0.06 

Canopy cover  - CC 0.8 0.08 

Ground cover  - CG 0.3 0.03 

Plant height  m PH 1.5 0.15 

Number of plants per unit area  number m-2 NV 250 25 

Average diameter of plant elements at ground surface  m ø 0.05 0.005 

Roughness of the soil surface  cm m-1 RFR 10 1 

Slope*  degrees S 6 - 

Slope length*  m L 10 - 
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Clay detachability by raindrop impact  J m-2 KRclay 0.1 0.01 

Silt detachability by raindrop impact  J m-2 KRsilt 0.5 0.05 

Sand detachability by raindrop impact  J m-2 KRsand 0.3 0.03 

Clay detachability by runoff  g mm-1 KQclay 0.1 0.01 

Silt detachability by runoff  g mm-1 KQsilt 0.16 0.016 

Sand detachability by runoff g mm-1 KQsand 0.15 0.015 

*The parameter value was held constant during the Monte Carlo simulation. 

As the MMMF model is applied with an annual resolution, we used the soil bulk density to convert the 

modelled soil losses from their native units to m yr-1, after each timestep. Next, the model reduced the depth 210 

of the upmost soil horizon considering the amount of eroded soil in the previous year. Since the model 

calculates soil losses separately for each particle size fraction, the soil texture of the 20 cm plough layer 

was updated after each timestep. Rock fragments were assumed not to be removed from the soil matrix, 

and therefore the stone cover (if present) undergoes a residual increment, considering the soil losses from 

the previous timestep. Of note, the selective removal of soil organic carbon associated to finer soil fractions 215 

was not simulated. If the upper horizon depth was greater than the 20 cm plough depth, we assumed that 

no mixing would occur with the underlying horizons. However, if the upper horizon was thinner than 20 

cm for any given timestep, we used a mass balance model to recalculate soil texture, soil organic carbon, 

and the percentage of rock fragments (used as a proxy for the stone cover model parameter) for the plough 

layer, considering the proportion of the lower horizon in the mixture. 220 

For every timestep, soil bulk density and soil moisture at field capacity were estimated using pedotransfer 

functions (PTFs). We established the PTFs by fitting a linear regression of bulk density and soil moisture 

at field capacity as a function of sand (%) and organic carbon content (%) for the A horizons in our soil 

profile dataset (Fig. A1, A2). This was performed because i) we assumed that bulk density and soil moisture 

at field capacity would be affected by the changes in soil texture due to selective particle size removal; and 225 

ii) we presupposed that, as the subsoil horizons get incorporated into the plough layer and become closer 

to the surface, their bulk density and soil moisture at field capacity would become more characteristic of an 

A horizon, due to tillage and organic matter input from plant biomass. Similarly, we established a pragmatic 

lower limit for soil organic carbon content for different soil texture classes, based on the lowest values 

observed in the A horizons from our dataset. That is, we assumed the organic carbon would not decrease 230 

indefinitely with soil truncation due to the continuous input from plant material and potentially other 

farming practices. This assumption is based on observations that even heavily eroded arable soils typically 

contain some type of Ap horizon (Świtoniak, 2014). The successive soil thinning and mixing processes 

continued for 500 years or until the plough layer reached the end of the lowermost soil horizon (i.e., 20 cm 

above the bedrock). We assumed that soil losses would outpace soil formation within the simulated system 235 
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(see Evans et al., 2019), and since we did not focus on calculating soil lifespans, it was not necessary to 

integrate soil formation rates into the model calculations. 

The sensitivity of the simulated erosion rates to soil thinning was assessed with the correlation (Pearson’s 

r) between soil truncation (i.e., the cumulative annual reduction in soil depth) and annual soil losses (here 

taken as the median of the Monte Carlo simulations per year). Soil profiles exhibiting a positive correlation 240 

(r > 0, p<0.00001) were assumed to display an accelerating erosion feedback trend for the simulation period, 

whereas the ones with a negative correlation (r < 0, p<0.00001) were assumed to display a deaccelerating 

feedback trend. The remaining profiles were not considered sensitive to truncation and were assumed to 

present a stable erosion progression. Of note, we imposed a more restrictive significance level in order to 

screen out the profiles with very slight responses to soil truncation, considering this is a fully controlled 245 

modelling experiment. 

In order to understand the processes driving the soil erosion feedback system, we used a random forest 

analysis to rank the importance of model parameters for predicting the above-mentioned erosion trends 

(i.e., deaccelerating, stable, accelerating). In this case, the differences between soil parameter values for the 

initial and final timesteps were used to predict the trends for each of soil the profiles. All model simulations 250 

and statistical analyses were performed in R (R Core Team, 2022), and the code is available as 

supplementary material (Batista et al., 2022).  

Importantly, we did not consider all potential changes to the modelled systems. That is, we did not consider 

any feedbacks between soil thinning and crop development, nor the effects of climate change on rainfall, 

temperature, and farming practices. Although we are aware such factors would likely have an impact on 255 

the model simulations, our aim here is to analyse the sensitivity of modelled soil losses to erosion-induced 

changes to soil properties. This involves making fixed assumptions about other system components. In 

addition, we would like to highlight that our model simulations should not be mistaken as projections of 

future erosion rates in Britain, due to all the above-mentioned reasons. 

3 Results  260 

From the 265 soil profiles in the UK SOILPITS database, 103 (39 %) displayed a significant correlation (p 

< 0.00001) between soil truncation and annual soil losses. Within these truncation-sensitive profiles, 75 % 

displayed a deaccelerating feedback trend (Pearson’s r < 0) in erosion rates over the simulation period, 

whereas 25 % showed an accelerating one (Pearson’s r > 0). Figure 4 illustrates the typical behaviour of 

these trends using data from two representative profiles with similar topsoil but different subsoil properties 265 

at the beginning of the simulation. 
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Figure 4. Soil erosion trends over 500 years of model simulations for two representative profiles from the 

UK SOILPITS dataset. Coloured symbols are the median of the simulations per year and the solid lines are 

local regression functions adjusted from the data. 270 

The changes in erosion rates were mostly explained by alterations in soil texture. This is demonstrated in 

Fig. 5, which displays a random forest importance ranking for predicting the feedback trends in model 

outputs (i.e., deaccelerating, stable, accelerating). The random forest analysis described how soil erosion 

responses were highly influenced by variations in silt content and stone cover. Changes in soil moisture at 

field capacity had a lower impact on the modelled soil losses, whereas the simulated variations in bulk 275 

density had an almost null effect on model outputs (Fig. 5). 
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Figure 5. Random forest importance ranking for predicting the erosion trends for each soil profile (i.e., 

deaccelerating, stable, accelerating). Feature importance is represented by the relative increase of the mean 

squared error (MSE) of the random forest (i.e., how much removing the feature increased the prediction 280 

error). 

The soil erosion feedback system can be visualised comparing the difference in model parameter values 

with the variation in soi losses over 10-year rolling means (Fig. 6). Positive and negative changes in single 

parameter values did not yield consistent responses regarding the simulated soil losses (e.g., a 1 % decrease 

in sand content can lead to both accelerating and deaccelerating erosion rates over the rolling means). 285 

However, the direction of the changes in model parameters explains the feedback trends for the individual 

soil profiles (Fig. 6). For instance, the profiles with an accelerating erosion trend are characterised almost 

exclusively by increases in silt content within the 10-year rolling means. Contrarily, for the profiles in 

which soil losses show a deaccelerating trend over the whole simulation period have decreasing contents 

of silt and increasing stone cover within the rolling means. Less important parameters, such as bulk density 290 

and soil moisture at field capacity, display a scattered pattern, regardless of the erosion trends (Fig. 6). 
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Figure 6. Hexagonal heatmaps relating the changes in model parameters to soil loss responses over 10-year 

rolling means for the soil profiles. Colours represent the number (n) of cases in each hexagon. Rows 

separate the profiles according to the erosion trend over the simulated period. 295 
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The main processes driving the soil erosion feedback system were particle detachment by raindrop impact 

and silt sediment supply (R2 = 0.90 and 0.84, respectively; Fig. 7), while changes in runoff amounts, 

detachment by runoff, and runoff transport capacity had a narrow effect on the simulated soil losses (R2 = 

0.01; Fig. 7). That is, only acute changes in discharge seem to have produced a sufficient response in 

detachment by runoff and in transport capacity to influence the net erosion rates (Fig. 7). 300 

Figure 7. Hexagonal heatmaps and linear regression lines (p < 0.00001) of the changes in soil loss over 10-

year rolling means for the soil profiles. Fill colours represent the number (n) of cases in each hexagon.  
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Importantly, annual runoff depths and soil losses were correlated in only 31 (12 %) of the 265 soil profiles 

(p < 0.00001). The positive correlations occurred for instance when the uprise of clayey subsurface horizons 305 

led to a reduction in both runoff amounts (due to an increase in soil moisture storage capacity) and soil 

detachment (Fig. 8). The negative correlations typically occurred in profiles with silty/loamy topsoils and 

sandy substrata. As the silty material was removed, enriching the topsoil with sand, the erosion rates 

declined, whereas runoff amounts increased due to a reduction in soil moisture at field capacity. However, 

this increase in runoff was not sufficient to accelerate soil losses (Fig. 8). 310 

 

Figure 8. Evolution of model parameters and simulated runoff and soil losses over 500 years for two soil 

profiles from the UK SOILPITS database. Annual runoff depth was converted to cm to improve the 

visualisation of the data. Coloured symbols are the median of the simulations per year and the solid lines 

are local regression functions adjusted from the data. 315 
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4 Discussion 

Our model simulations underline the strong interaction between current soil erosion dynamics and the 

erosion history of soil profiles. That is, the simulations demonstrate how different soils are likely to have 

contrasting responses to soil thinning, depending on the properties of the surface material, as well as those 

of the underlying soil horizons. In our database, most of the truncation-sensitive soil profiles presented 320 

deaccelerating feedback trends, which reflects both the characteristics of these soils and, importantly, our 

basic modelling assumptions. 

For instance, as silt detachability in the MMMF model is assumed to be much higher than for other particle 

size fractions, silt was preferentially removed from the soil matrix. In addition, as silt contents typically 

remain stable or decrease in the subsurface horizons of the soil profiles in our database (Fig. 2), silt was 325 

often not replenished by the underlying substrata being mixed into the plough layer. Such behaviour is 

overall consistent with empirical observations of selective particle size removal by interrill erosion 

processes (Koiter et al., 2017) and the progressive coarsening of eroding surface soils (Parsons et al., 1991). 

However, it is worth highlighting that the soil detachability values used in MMMF have a limited empirical 

basis (Quansah, 1982), and the erodibility of the clay particles might be poorly described due to the 330 

neglection of other variables, such as aggregate stability (Morgan and Duzant, 2008).  

The residual accumulation of rock fragments further contributed to the reduction in erosion rates for the 

profiles with a deaccelerating trend, as stone cover is assumed to armour the land surface and to reduce soil 

detachment. Specifically, even a small number of rock fragments in the soil matrix can disperse the overland 

flow and dissipate its energy, reducing rill incision and soil losses (Rieke-Zapp et al., 2007). Moreover, 335 

decreases in water erosion rates due to a residual increment of stone cover have previously been simulated 

by Govers et al. (2006), who warned, however, that the accumulation of rock fragments in arable soils 

depends on tillage practices. Notwithstanding, increases in rock fragment contents might also affect soil 

hydraulic conductivity and water holding capacity (Cousin et al., 2003), and therefore influence runoff 

formation. None of these potential interactions were represented in our model simulations, and might 340 

therefore warrant further scrutiny. 

The soil profiles displaying an accelerating erosion trend were characterised by the presence of sandy or 

loamy surface horizons over a siltier substratum, which successively supplied the plough layer with readily 

erodible material as the original topsoil was removed by erosion. Moreover, these profiles were defined by 

the absence of a surface stone cover and by subsoil horizons with very limited amounts of rock fragments. 345 

Although accelerating erosion trends were relatively infrequent in our dataset, such behaviour might be 
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expected in soils with incrementing silt contents in their C horizons, which are common, for instance, where 

loess is the parent material (Finke, 2012; Świtoniak et al., 2016). 

Moreover, potential accelerating erosion trends might have been under-detected by the model simulations, 

as we did not consider how truncation can decrease the soil moisture storage capacity due to a reduction in 350 

soil depth, and how this might affect runoff generation (Dunne and Black, 1970; Morgan et al., 1984). That 

is, as soils become shallower, excess saturation overland flow might increase, depending on the 

permeability of the bedrock or the presence of an impeding horizon (Beven, 2012; Moraes et al., 2010). We 

did not consider these processes in our simulation due to the absence of an explicit soil thickness parameter 

in the MMMF equations and the lack of data regarding the permeability of the soil profiles parent materials. 355 

Furthermore, very different runoff responses to soil truncation can be expected in areas where infiltration 

excess is the dominant overland flow mechanism. While saturation excess is common under British 

edaphoclimatic conditions, most subhumid and semiarid zones are prone to infiltration excess runoff 

formation, which is a process primarily controlled at the soil surface (Smith and Goodrich, 2005). Under 

such circumstances, erosion-induced changes to topsoil properties might have an even greater interaction 360 

with runoff generation. In particular, soil crusting slows down infiltrability and rapidly increases the 

overland flow, leading to greater soil losses (Le Bissonnais, 2016; Fiener et al., 2008; Veihe et al., 2001). 

As the development of soil crusts is influenced by soil texture and organic carbon content (Fiener et al., 

2011), the truncation-induced changes we have simulated would likely alter the susceptibility of surface 

soils to crusting and, consequently, to infiltration excess runoff formation. Another caveat in the model 365 

structure worth highlighting is that, differently to what is exhibited in Fig. 8, an uprise of subsurface clayey 

material might in fact increase infiltration excess overland flow, due to the lower infiltrability and saturated 

hydraulic conductivity of heavy-textured soils (Hao et al., 2020), which are also more susceptible to 

compaction, depending on their mineralogy (Bonetti et al., 2017; Hamza and Anderson, 2005). 

In addition, accelerating erosion responses to soil truncation might have been more frequent if we assumed 370 

an increase in topsoil erodibility due to the lower aggregate stability and looser structure of the carbon 

depleted subsurface material being incorporated into the plough layer (Le Bissonnais, 2016; Doetterl et al., 

2016; Tanner et al., 2018). That is, as the soil detachability coefficients from MMMF do not take soil 

organic carbon into account, the sensitivity of topsoil erodibility to soil truncation was likely downplayed. 

Our model simulations may have particularly underestimated erosion responses to soil thinning for the 375 

profiles which displayed an accumulation of sand and a depletion in clay and silt contents. This progressive 

coarsening should lead to lower soil water availability, and therefore, lower soil cover, lower crop biomass 

production, and less organic carbon input from plants. As sandier soils already have less carbon stabilisation 
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mechanisms (Doetterl et al., 2016), this would lead to even greater truncation-induced depletions in soil 

organic carbon and therefore to increases in erodibility (Auerswald et al., 2014; Fernández and Vega, 2018). 380 

In general, as organic carbon was only an indirect model input via the PTFs for estimating bulk density and 

soil moisture at field capacity, the interplays between soil thinning, soil organic matter, and soil erodibility 

were likely underrepresented here. 

Although not all the complex interactions between soil erosion and soil thinning could be described in our 

simulations, we can identify where more empirical evidence would help constrain our modelling 385 

assumptions. For instance, investigating how truncation affects the aggregate stability of surface soils (due 

to changes in soil texture, mineralogy, and organic carbon dynamics) might be an important step in order 

to further understand the feedbacks between erosion and soil thinning. Interactions between soil truncation, 

water availability to plants, and crop growth – and how these could in turn reduce soil cover and organic 

carbon input – might also warrant further investigations. Similarly, the responses of different runoff 390 

generation mechanisms to soil thinning and erosion-induced changes to soil properties should be beneficial 

to increase our understanding of the erosion feedback system.  

5 Conclusions 

Here we explored the soil erosion feedback system in 265 agricultural soil profiles in the United Kingdom. 

In particular, we simulated how selective erosion processes and the incorporation of different subsoil 395 

horizons into the plough layer affected the erodibility of surface soils. We further analysed how these 

processes could change erosion rates during a 500-year period. We found that i) soil erosion rates in 39 % 

of the soil profiles were sensitive to soil truncation, ii) that most of these truncation-sensitive profiles (75 

%) displayed a deaccelerating trend, and iii) that changes in soil texture and stone cover were the main 

drivers of the modelled soil erosion feedbacks loops. Importantly, we found that different soils had 400 

drastically different simulated responses to soil truncation, depending on the properties of the surface 

material as well as those of the underlying soil horizons. 

Ultimately, our findings highlight the dynamic nature of the soil as a three-dimensional body. That is, even 

the so-called intrinsic properties of surface soils might change in a matter of decades in areas under 

accelerated erosion rates. In specific, erosion-induced changes to soil properties can have a significant 405 

impact on the rates with which soils are eroded, which in turn affects the calculation of soil lifespans and 

model-based erosion projections. To date, this soil erosion feedback system has been largely overlooked in 

soil erosion models, which might have led to spurious estimates of long-term erosion rates. Therefore, 

understanding how erosion-induced changes to soil properties reverberate with erosion itself will be crucial 
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for improving long-term model predictions, investigating the resilience of different soils to erosion 410 

disturbances, and for developing appropriate soil conservation strategies for a changing world. 

6 Appendix A 

 

Figure A1. Pedotransfer function for estimating bulk density (BD) as a function of sand and organic 

carbon (OC) content. The regression was fit using only the data for the A horizons in the 265 agricultural 415 

soil profiles from the UK SOIL PITS dataset used in this study. 
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Figure A2. Pedotransfer function for estimating soil moisture at field capacity (MS) as a function of sand 

and organic carbon (OC) content. The regression was fit using only the data for the A horizons in the 265 

agricultural soil profiles from the UK SOIL PITS dataset used in this study. 420 

7 Code availability 

The model code is available online at: https://doi.org/10.5281/zenodo.6393134. 

8 Data availability 

The soil profile data used in this research is restricted under licence. For further information on data 

accessibility, please contact nsridata@cranfield.ac.uk. 425 
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